A new Kontorowich-Lebedev-like transformation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys. A: Math. Gen. 243199
(http://iopscience.iop.org/0305-4470/24/14/008)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 11:01

Please note that terms and conditions apply.

A new Kontorowich-Lebedev-like transformation

B F Svaiter \dagger and N F Svaiter \ddagger
\dagger Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina 110, 22460 Rio de Janeiro, Brazil
\ddagger Centro Brasileiro de Pesquisas Fisicas, Rua Dr Xavier Sigaud 150, 22290 Rio de Janeiro, Brazil

Received 24 October 1990, in final form 19 March 1991

Abstract. In this paper a new integral with respect to the index of Bessel functions of the first kind is evaluated.

1. Introduction

The equation of a massive scalar field in a two-dimensional Milne's universe [1,2] is

$$
\begin{equation*}
\left(\eta^{2} \frac{\partial^{2}}{\partial \eta^{2}}+\eta \frac{\partial}{\partial \eta}-\frac{\partial^{2}}{\partial \xi^{2}}+\eta^{2} m^{2}\right) \Phi(\eta, \xi)=0 . \tag{1.1}
\end{equation*}
$$

In order to quantize this field, a complete set of mode solutions of (1.1) is required. Sommerfeld [3] proposed

$$
\begin{align*}
& v_{\lambda}(\eta, \xi)=\frac{-\mathrm{i}}{2}(\sinh (\pi|\lambda|))^{-1 / 2} \mathrm{e}^{\mathrm{i} \lambda \xi} J_{-\mathrm{i}|\lambda|}(m \eta) \tag{1.2a}\\
& v_{\lambda}^{*}(\eta, \xi)=\frac{+\mathrm{i}}{2}(\sinh (\pi|\lambda|))^{-1 / 2} \mathrm{e}^{-\mathrm{i} \lambda \xi} J_{+\mathrm{i}|\lambda|}(m \eta) \tag{1.2b}
\end{align*}
$$

as a complete set of mode solutions, with $\lambda \in \mathbb{R}$ and J_{ν} Bessel functions of the first kind with order $\nu[4,5]$. Without loss of generality we will take the mass of the quanta of the field to be $m=1$.

In the calculation of the propagators of the field which satisfies (1.1), quantized by the mode-solutions (1.2), a new integral was found. It is a Kontorowich-Lebedev-like transformation:

$$
\begin{align*}
I\left(x, y_{1}, y_{2}\right)= & P . V . \int_{-\infty}^{+\infty} \mathrm{d} \lambda \frac{\mathrm{e}^{\mathrm{i} \lambda x}}{\sinh (\pi \lambda)} J_{-\mathrm{i} \lambda}\left(y_{1}\right) J_{+\mathrm{i} \lambda}\left(y_{2}\right) \\
& -P . V . \int_{-\infty}^{+\infty} \mathrm{d} \lambda \frac{\mathrm{e}^{\mathrm{i} \lambda x}}{\sinh (\pi \lambda)} J_{+\mathrm{i} \lambda}\left(y_{1}\right) J_{-\mathrm{i} \lambda}\left(y_{2}\right) \\
= & \int_{-\infty}^{+\infty} \mathrm{d} \lambda \frac{\mathrm{e}^{\mathrm{i} \lambda x}}{\sinh (\pi \lambda)}\left[J_{-\mathrm{i} \lambda}\left(y_{1}\right) J_{+\mathrm{i} \lambda}\left(y_{2}\right)-J_{+\mathrm{i} \lambda}\left(y_{1}\right) J_{-\mathrm{i} \lambda}\left(y_{2}\right)\right] . \tag{1.3}
\end{align*}
$$

Defining

$$
\begin{equation*}
f(\lambda, a, b, c)=\frac{\mathrm{e}^{\mathrm{i} \lambda a}}{\sinh (\pi \lambda)} J_{-\mathrm{i} \lambda}(b) J_{+\mathrm{i} \lambda}(c) \tag{1.4}
\end{equation*}
$$

the integral to be evaluated becomes
$I\left(x, y_{1}, y_{2}\right)=$ P.V. $\int_{-\infty}^{+\infty} \mathrm{d} \lambda f\left(\lambda, x, y_{1}, y_{2}\right)-$ P.V. $\int_{-\infty}^{+\infty} \mathrm{d} \lambda f\left(\lambda, x, y_{2}, y_{1}\right)$.

2. The evaluation of $P . V . \int_{-\infty}^{+\infty} \mathrm{d} \lambda f(\lambda, a, b, c)$

The function $f(\lambda, a, b, c)$ is analytic with respect to λ in $\mathbb{C} /\{i k: k \in \mathbb{Z}\}$. In the points $\lambda=\mathrm{i} k(k \in \mathbb{Z})$, either $f(\lambda \ldots)$ has a first-order pole with

$$
\begin{equation*}
\operatorname{Res}(f(\lambda, a, b, c), \lambda=\mathrm{i} k)=\frac{\mathrm{e}^{-k a}}{\pi} J_{k}(b) J_{k}(c) \tag{2.1}
\end{equation*}
$$

or $J_{k}(a) J_{k}(b)=0$ and f can be analytically continued to $\lambda=\mathrm{i} k$.
Two distinct contours, $C(n, \varepsilon)$ and $C^{\prime}(n, \varepsilon)$ will be used to perform the integration (see figures 1 and 2). C_{4} and C_{4}^{\prime} are semi-circles centred at $\lambda=0$ and with radius $n+\frac{1}{2}$, $n \in \mathbb{N} . C_{2}$ and C_{2}^{\prime} are semi-circles centred at $\lambda=0$ and with radius $\varepsilon, 0<\varepsilon<1$.

It is convenient to employ the notation:

$$
\begin{equation*}
(z)_{0}=1 \quad(z)_{1}=z \quad(z)_{k}=z(z+1) \ldots(z+k-1) . \tag{2.2}
\end{equation*}
$$

The expansion of J in a power series yeilds:

$$
\begin{equation*}
J_{\nu}(y)=\left(\frac{1}{2} y\right)^{\nu} \sum_{k=0}^{k=\infty} \frac{\left(-y^{2} / 4\right)^{k}}{k!\Gamma(\nu+k+1)}=\frac{\left(\frac{1}{2} y\right)^{\nu}}{\Gamma(\nu+1)} \sum_{k=0}^{k=\infty} \frac{\left(-y^{2} / 4\right)^{k}}{k!(\nu+1)_{k}} \tag{2.3}
\end{equation*}
$$

so that $f(\lambda, a, b, c)$ can be expressed as
$f(\lambda, a, b, c)=\frac{\mathrm{e}^{\mathrm{i} \lambda a}}{\sinh (\pi \lambda)} \frac{(c / b)^{\mathrm{i} \lambda}}{\Gamma(\mathrm{i} \lambda+1) \Gamma(-\mathrm{i} \lambda+1)} \sum_{k=0}^{k=\infty} \frac{\left(-c^{2} / 4\right)^{k}}{k!(\mathrm{i} \lambda+1)_{k}}$

$$
\begin{equation*}
\times \sum_{k=0}^{k=\infty} \frac{\left(-b^{2} / 4\right)^{k}}{k!(-i \lambda+1)_{k}} \tag{2.4}
\end{equation*}
$$

Using the relationship $\Gamma(-\mathrm{i} \lambda+1) \Gamma(\mathrm{i} \lambda+1)=\pi \lambda / \sinh (\pi \lambda)$,

$$
\begin{equation*}
f(\lambda, a, b, c)=\frac{\left(\mathrm{e}^{a} c / b\right)^{\mathrm{i} \lambda}}{\pi \lambda} \sum_{k=0}^{k=\infty} \frac{\left(-c^{2} / 4\right)^{k}}{k!(\mathrm{i} \lambda+1)_{k}} \sum_{k=0}^{k=\infty} \frac{\left(-b^{2} / 4\right)^{k}}{k!(-\mathrm{i} \lambda+1)_{k}} . \tag{2.5}
\end{equation*}
$$

Figure 1

Figure 2

Using the relationship ($\lambda \in \mathbb{R}$):

$$
\left|\sum_{k=1}^{k=\infty} \frac{u^{k}}{k!(-\mathrm{i} \lambda+1)_{k}}\right| \leqslant \frac{\mathrm{e}^{|u|}}{|\mathrm{i} \lambda+1|}
$$

we can express $f(\lambda, a, b, c)$ as

$$
f(\lambda, a, b, c)=\frac{\left(\mathrm{e}^{a} c / b\right)^{\mathrm{i} \lambda}}{\pi \lambda}+g(\lambda, a, b, c)
$$

with $|g(\lambda, a, b, c)| \leqslant M /\left(\lambda^{2}\right)$ for some $M \in \mathbb{R}$.
Now it is clear that, whenever $a, b, c \in \mathbb{R}, b, c>0$ and $\mathrm{e}^{\alpha} b / c$ is not equal 1 , the integral $\int_{\varepsilon}^{\infty} f(\lambda, a, b, c) \mathrm{d} \lambda$ does exist $(\varepsilon>0)$.

If $\lambda \in C_{4}$ or $\lambda \in C_{4}^{\prime}$ then $\left|(\pm i \lambda+1)_{k}\right| \geqslant 1 / 2^{k}$ and

$$
\begin{equation*}
|f(\lambda, a, b, c)| \leqslant \frac{\left(\mathrm{e}^{a} c / b\right)^{-1 \mathrm{~m}(\lambda)}}{\pi|\lambda|} \mathrm{e}^{\left(\mathrm{c}^{2}+b^{2}\right) / 2} \quad|\lambda|=n+\frac{1}{2}, n \in \mathbb{N} . \tag{2.6}
\end{equation*}
$$

Employing the parameterizations:

$$
\begin{array}{ll}
\lambda=\left(n+\frac{1}{2}\right) \mathrm{e}^{\mathrm{i} \theta} \quad & 0 \leqslant \theta \leqslant \pi \text { in } C_{4} \\
& -\pi \leqslant \theta \leqslant 0 \text { in } C_{4}^{\prime} \tag{2.7b}
\end{array}
$$

the absolute value of the integral of f over C_{4} and C_{4}^{\prime} can be estimated:

$$
\begin{align*}
& \left|\int_{C_{4}} f(\lambda, a, b, c) \mathrm{d} \lambda\right| \leqslant \frac{\mathrm{e}^{\left(c^{2}+b^{2}\right) / 2}}{\pi} 2 \int_{0}^{\pi / 2}\left(\mathrm{e}^{a} c / b\right)^{-\left(n+\frac{1}{2}\right) \sin (\lambda)} \mathrm{d} \lambda \tag{2.8a}\\
& \left|\int_{C_{4}} f(\lambda, a, b, c) \mathrm{d} \lambda\right| \leqslant \frac{\mathrm{e}^{\left(c^{2}+b^{2}\right) / 2}}{\pi} 2 \int_{0}^{\pi / 2}\left(\mathrm{e}^{a} c / b\right)^{+\left(n+\frac{1}{2}\right) \sin (\lambda)} \mathrm{d} \lambda \tag{2.8b}
\end{align*}
$$

and

$$
\begin{array}{ll}
\lim _{n \rightarrow \infty} \int_{C_{4}} f(\lambda, a, b, c) \mathrm{d} \lambda=0 & \text { if } \mathrm{e}^{a} c / b>1 \\
\lim _{n \rightarrow \infty} \int_{C_{4}} f(\lambda, a, b, c) \mathrm{d} \lambda=0 & \text { if } \mathrm{e}^{a} c / b<1 \tag{2.9b}
\end{array}
$$

Using the residue theorem we get

$$
\begin{align*}
& \int_{C(n, \varepsilon)} f(\lambda, a, b, c) \mathrm{d} \lambda=2 \pi \mathrm{i} \sum_{k=1}^{k=n} \frac{\mathrm{e}^{-k a}}{\pi} J_{k}(b) J_{k}(c) \tag{2.10}\\
& \int_{C^{\prime}(n, \varepsilon)} f(\lambda, a, b, c) \mathrm{d} \lambda=-2 \pi \mathrm{i} \sum_{k=-1}^{k=-n} \frac{\mathrm{e}^{-k a}}{\pi} J_{k}(b) J_{k}(c) . \tag{2.11}
\end{align*}
$$

If $\mathrm{e}^{a} c / b>1$,
$\lim _{n \rightarrow \infty+(n \in \mathbb{N})} \int_{C(n, \varepsilon)} f(\lambda, a, b, c) \mathrm{d} \lambda$

$$
\begin{align*}
& =P . V . \int_{-\infty}^{+\infty} f(\lambda, a, b, c) \mathrm{d} \lambda-\pi \mathrm{i} \operatorname{Res}(f, 0) \\
& =2 \pi \mathrm{i} \sum_{k=1}^{k=\infty} \frac{\mathrm{e}^{-k a}}{\pi} J_{k}(b) J_{k}(c) \tag{2.12}
\end{align*}
$$

Therefore
P.V. $\int_{-\infty}^{+\infty} f(\lambda, a, b, c) \mathrm{d} \lambda=2 \mathrm{i}\left[\frac{1}{2} J_{0}(b) J_{0}(c)+\sum_{k=1}^{k=+\infty} \mathrm{e}^{-k a} J_{k}(b) J_{k}(c)\right]$
if $\mathrm{e}^{a} c / b>1$. The same reasoning, using $C^{\prime}(n, \varepsilon)$ when $\mathrm{e}^{a} c / b<1$, gives
P.V. $\int_{-\infty}^{+\infty} f(\lambda, a, b, c) \mathrm{d} \lambda=-2 \mathrm{i}\left[\frac{1}{2} J_{0}(b) J_{0}(c)+\sum_{k=-1}^{k=-\infty} \mathrm{e}^{-k a} J_{k}(b) J_{k}(c)\right]$
if $\mathrm{e}^{a} c / b<1$.

3. The evaluation of $I\left(x, y_{1}, y_{2}\right)$

From (2.13a) and (2.13b), it follows that $I\left(x, y_{1}, y_{2}\right)=0$ if $\mathrm{e}^{-x}<y_{1} / y_{2}<\mathrm{e}^{x}$ and if $\mathrm{e}^{x}<y_{2} / y_{1}<\mathrm{e}^{-x}$, while
$I\left(x, y_{1}, y_{2}\right)=2 \mathrm{i} \sum_{k=-\infty}^{k=+\infty} \mathrm{e}^{-k x} J_{k}\left(y_{1}\right) J_{k}\left(y_{2}\right) \quad$ if $y_{1} / y_{2}<\mathrm{e}^{-x} \quad$ and $y_{1} / y_{2}<\mathrm{e}^{x}$
$I\left(x, y_{1}, y_{2}\right)=2 \mathrm{i} \sum_{k=-\infty}^{k=+\infty} \mathrm{e}^{-k x} J_{k}\left(y_{1}\right) J_{k}\left(y_{2}\right) \quad$ if $y_{1} / y_{2}>\mathrm{e}^{-x}$ and $y_{1} / y_{2}>\mathrm{e}^{x}$.
It is known [6] that

$$
\begin{equation*}
J_{0}\left(\left(b^{2}+c^{2}-2 b c \cosh (a)\right)^{1 / 2}\right)=\sum_{k=-\infty}^{k=+\infty} \mathrm{e}^{-k a} J_{k}(b) J_{k}(c) \tag{3.1}
\end{equation*}
$$

Defining

$$
\begin{equation*}
\sigma\left(x, y_{1}, y_{2}\right)=y_{1}^{2}+y_{2}^{2}-2 y_{1} y_{2} \cosh (x) \tag{3.2}
\end{equation*}
$$

algebraic manipulations of the preceding formula give

$$
\begin{equation*}
\sigma\left(x, y_{1}, y_{2}\right)=-y_{1} y_{2} \mathrm{e}^{-x}\left(\mathrm{e}^{x} y_{2} / y_{1}-1\right)\left(\mathrm{e}^{x} y_{1} / y_{2}-1\right) \tag{3.3}
\end{equation*}
$$

So if $\sigma<0$ then $\mathrm{e}^{-x}<y_{1} / y_{2}<\mathrm{e}^{x}$ or $\mathrm{e}^{x}<y_{2} / y_{1}<\mathrm{e}^{-x}$ and $I\left(x, y_{1}, y_{2}\right)=0$.

$$
\begin{equation*}
I\left(x, y_{1}, y_{2}\right)=0 \quad \sigma<0 . \tag{3.4}
\end{equation*}
$$

If $\sigma\left(x, y_{1}, y_{2}\right)>0$ and $y_{2}>y_{1}$ then $y_{1} / y_{2}<\mathrm{e}^{-x}$ and $y_{1} / y_{2}<\mathrm{e}^{x}$, and

$$
\begin{equation*}
I\left(x, y_{1}, y_{2}\right)=2 \mathrm{i} J_{0}\left(\sigma\left(x, y_{1}, y_{2}\right)^{1 / 2}\right) \quad \sigma>0, y_{2}>y_{1} \tag{3.5}
\end{equation*}
$$

If $\sigma\left(x, y_{1}, y_{2}\right)>0$ and $y_{1}>y_{2}$ then $y_{1} / y_{2}>\mathrm{e}^{-x}$ and $y_{1} / y_{2}>\mathrm{e}^{x}$, and

$$
\begin{equation*}
I\left(x, y_{1}, y_{2}\right)=-2 \mathrm{i} J_{0}\left(\sigma\left(x, y_{1}, y_{2}\right)^{1 / 2}\right) \quad \sigma>0, y_{2}<y_{1} \tag{3.6}
\end{equation*}
$$

Defining

$$
\begin{align*}
& H(t)= \begin{cases}0 & \text { if } t<0 \\
1 & \text { if } t>0\end{cases} \tag{3.7a}\\
& S(t)=\left\{\begin{aligned}
-1 & \text { if } t<0 \\
1 & \text { if } t>0
\end{aligned}\right. \tag{3.7b}
\end{align*}
$$

we have

$$
\begin{equation*}
I\left(x, y_{1}, y_{2}\right)=2 \mathrm{i} H(\sigma) S\left(y_{2}-y_{1}\right) J_{0}\left(\sigma^{1 / 2}\right) \quad \sigma=y_{1}^{2}+y_{2}^{2}-2 y_{1} y_{2} \cosh (x) \tag{3.8}
\end{equation*}
$$

Acknowledgments

The authors wish to thank Professor A Jeffrey for his stimulating comments about the novelty of the integral appearing in (1.3) and Dr M Calvão for the revision of the final version. This paper was partially supported by CNPq.

References

[1] Birrel N D and Davies P C W 1982 Quantum Fields in Curved Space (Cambridge: Cambridge University Press)
[2] Svaiter B F and Svaiter N F 1988 Report CBPF-NF-043/88
[3] Sommerfeld C M 1974 Ann. Phys. 151892
[4] Erdérlyi A, Magnus W, Oberhettinger F and Tricomi F G 1953 Higher Transcendental Functions vol II (New York: McGraw-Hill)
[5] Lebedev N N 1972 Special Functions and Their Applications (New York: Dover)
[6] Watson G N 1962 A Treatise on the Theory of Bessel Functions 2nd edn (Cambridge: Cambridge University Press)

